Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.763
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2315167121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557177

RESUMO

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.


Assuntos
Rede de Modo Padrão , Roedores , Ratos , Animais , Córtex Cerebral , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
2.
Adv Neurobiol ; 36: 639-657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468056

RESUMO

The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.


Assuntos
Mapeamento Encefálico , Fractais , Humanos , Mapeamento Encefálico/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Dor , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
3.
Sci Rep ; 14(1): 3142, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326324

RESUMO

Exploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC. Here, we employed an accurate directed SC of the mouse brain acquired through viral tracers and compared it with single-subject effective connectivity (EC) matrices derived from a dynamic causal model (DCM) applied to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their respective couplings by conditioning on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks; only within sensory motor networks did we observe connections that align in terms of both effective and structural strength.


Assuntos
Encéfalo , Conectoma , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/anatomia & histologia
4.
Hum Brain Mapp ; 45(2): e26587, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339903

RESUMO

Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Descanso , Rede Nervosa/diagnóstico por imagem
5.
Epilepsia ; 65(4): 961-973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306118

RESUMO

OBJECTIVE: Genetic generalized epilepsy (GGE) accounts for approximately 20% of adult epilepsy cases and is considered a disorder of large brain networks, involving both hemispheres. Most studies have not shown any difference in functional whole-brain network topology when compared to healthy controls. Our objective was to examine whether this preserved global network topology could hide local reorganizations that balance out at the global network level. METHODS: We recorded high-density electroencephalograms from 20 patients and 20 controls, and reconstructed the activity of 118 regions. We computed functional connectivity in windows free of interictal epileptiform discharges in broad, delta, theta, alpha, and beta frequency bands, characterized the network topology, and used the Hub Disruption Index (HDI) to quantify the topological reorganization. We examined the generalizability of our results by reproducing a 25-electrode clinical system. RESULTS: Our study did not reveal any significant change in whole-brain network topology among GGE patients. However, the HDI was significantly different between patients and controls in all frequency bands except alpha (p < .01, false discovery rate [FDR] corrected, d < -1), and accompanied by an increase in connectivity in the prefrontal regions and default mode network. This reorganization suggests that regions that are important in transferring the information in controls were less so in patients. Inversely, the crucial regions in patients are less so in controls. These findings were also found in delta and theta frequency bands when using 25 electrodes (p < .001, FDR corrected, d < -1). SIGNIFICANCE: In GGE patients, the overall network topology is similar to that of healthy controls but presents a balanced local topological reorganization. This reorganization causes the prefrontal areas and default mode network to be more integrated and segregated, which may explain executive impairment associated with GGE. Additionally, the reorganization distinguishes patients from controls even when using 25 electrodes, suggesting its potential use as a diagnostic tool.


Assuntos
Epilepsia Generalizada , Epilepsia , Adulto , Humanos , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Mapeamento Encefálico , Epilepsia Generalizada/genética , Imageamento por Ressonância Magnética/métodos
6.
Neuroimage ; 287: 120522, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253216

RESUMO

Designing a comprehensive four-dimensional resting-state functional magnetic resonance imaging (4D Rs-fMRI) based default mode network (DMN) modeling methodology to reveal the spatio-temporal patterns of individual DMN, is crucial for understanding the cognitive mechanisms of the brain and the pathogenesis of psychiatric disorders. However, there are still two limitations of existing approaches for DMN modeling. The approaches either (1) simply split the spatio-temporal components and ignore the overall character of the spatio-temporal patterns or (2) are biased in the process of feature extraction for DMN modeling, and their spatio-temporal accuracy is thus not warranted. To this end, we propose a novel Spatio-Temporal Brain Attention Skip Network (STBAS-Net) to model the personalized spatio-temporal patterns of the DMN. STBAS-Net consists of spatial and temporal components, where the multi-head attention skip connection block in the spatial component achieves detailed feature extraction and enhancement in the shallow stage. Under the guidance of spatial information, we technically fuse multiple spatio-temporal information in the temporal component, which dexterously exploits the overall spatio-temporal features and achieves mutual constraints of spatio-temporal patterns to characterize the spatio-temporal patterns of the DMN. We verify the proposed STBAS-Net on a publicly released 4D Rs-fMRI dataset and an EMCI dataset. The experimental results show that compared with existing advanced methods, the proposed network can more accurately model the personalized spatio-temporal patterns of the human brain DMN and successfully identify abnormal spatio-temporal patterns in EMCI patients. This study provides a potential tool for revealing the spatio-temporal patterns of the human brain DMN and is expected to provide an effective methodological framework for future exploration of abnormal brain spatio-temporal patterns and modeling of other functional brain networks.


Assuntos
Mapeamento Encefálico , Rede de Modo Padrão , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Atenção , Rede Nervosa/diagnóstico por imagem
7.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38244562

RESUMO

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Assuntos
Conectoma , Função Executiva , Humanos , Função Executiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Núcleo Caudado , Atenção/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
8.
Sci Rep ; 14(1): 1184, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216636

RESUMO

Over the last decade, there has been growing interest in learning the mapping from structural connectivity (SC) to functional connectivity (FC) of the brain. The spontaneous fluctuations of the brain activity during the resting-state as captured by functional MRI (rsfMRI) contain rich non-stationary dynamics over a relatively fixed structural connectome. Among the modeling approaches, graph diffusion-based methods with single and multiple diffusion kernels approximating static or dynamic functional connectivity have shown promise in predicting the FC given the SC. However, these methods are computationally expensive, not scalable, and fail to capture the complex dynamics underlying the whole process. Recently, deep learning methods such as GraphHeat networks and graph diffusion have been shown to handle complex relational structures while preserving global information. In this paper, we propose a novel attention-based fusion of multiple GraphHeat networks (A-GHN) for mapping SC-FC. A-GHN enables us to model multiple heat kernel diffusion over the brain graph for approximating the complex Reaction Diffusion phenomenon. We argue that the proposed deep learning method overcomes the scalability and computational inefficiency issues but can still learn the SC-FC mapping successfully. Training and testing were done using the rsfMRI data of 1058 participants from the human connectome project (HCP), and the results establish the viability of the proposed model. On HCP data, we achieve a high Pearson correlation of 0.788 (Desikan-Killiany atlas with 87 regions) and 0.773 (AAL atlas with 86 regions). Furthermore, experiments demonstrate that A-GHN outperforms the existing methods in learning the complex nature of the structure-function relation of the human brain.


Assuntos
Conectoma , Rede Nervosa , Humanos , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos
9.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38044469

RESUMO

Brain function changes affect cognitive functions in older adults, yet the relationship between cognition and the dynamic changes of brain networks during naturalistic stimulation is not clear. Here, we recruited the young, middle-aged and older groups from the Cambridge Center for Aging and Neuroscience to investigate the relationship between dynamic metrics of brain networks and cognition using functional magnetic resonance imaging data during movie-watching. We found six reliable co-activation pattern (CAP) states of brain networks grouped into three pairs with opposite activation patterns in three age groups. Compared with young and middle-aged adults, older adults dwelled shorter time in CAP state 4 with deactivated default mode network (DMN) and activated salience, frontoparietal and dorsal-attention networks (DAN), and longer time in state 6 with deactivated DMN and activated DAN and visual network, suggesting altered dynamic interaction between DMN and other brain networks might contribute to cognitive decline in older adults. Meanwhile, older adults showed easier transfer from state 6 to state 3 (activated DMN and deactivated sensorimotor network), suggesting that the fragile antagonism between DMN and other cognitive networks might contribute to cognitive decline in older adults. Our findings provided novel insights into aberrant brain network dynamics associated with cognitive decline.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Mapeamento Encefálico , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
10.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38044477

RESUMO

Volitional eyes closing would shift brain's information processing modes from the "exteroceptive" to "interoceptive" state. This transition induced by the eyes closing is underpinned by a large-scale reconfiguration of brain network, which is still not fully comprehended. Here, we investigated the eyes-closing-relevant network reconfiguration by examining the functional integration among intrinsic modules. Our investigation utilized a publicly available dataset with 48 subjects being scanned in both eyes closed and eyes open conditions. It was found that the modular integration was significantly enhanced during the eyes closing, including lower modularity index, higher participation coefficient, less provincial hubs, and more connector hubs. Moreover, the eyes-closing-enhanced integration was particularly noticeable in the hubs of network, mainly located in the default-mode network. Finally, the hub-dominant modular enhancement was positively correlated to the eyes-closing-reduced entropy of BOLD signal, suggesting a close connection to the diminished consciousness of individuals. Collectively, our findings strongly suggested that the enhanced modular integration with substantially reorganized hubs characterized the large-scale cortical underpinning of the volitional eyes closing.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Olho , Mapeamento Encefálico , Cognição , Rede Nervosa/diagnóstico por imagem
11.
Neuroradiology ; 66(1): 135-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001311

RESUMO

PURPOSE: Prader-Willi syndrome (PWS) suffers from brain functional reorganization and developmental delays during childhood, but the underlying neurodevelopmental mechanism is unclear. This paper aims to investigate the intra- and internetwork functional connectivity (FC) changes, and their relationships with developmental delays in PWS children. METHODS: Resting-state functional magnetic resonance imaging datasets of PWS children and healthy controls (HCs) were acquired. Independent component analysis was used to acquire core resting-state networks (RSNs). The intra- and internetwork FC patterns were then investigated. RESULTS: In terms of intranetwork FC, children with PWS had lower FC in the dorsal attention network, the auditory network, the medial visual network (VN) and the sensorimotor network (SMN) than HCs (FWE-corrected, p < 0.05). In terms of internetwork FC, PWS children had decreased FC between the following pairs of regions: posterior default mode network (DMN) and anterior DMN; posterior DMN and SMN; SMN and posterior VN and salience network and medial VN (FDR-corrected, p < 0.05). Partial correlation analyses revealed that the intranetwork FC patterns were positively correlated with developmental quotients in PWS children, while the internetwork FC patterns were completely opposite (p < 0.05). Intranetwork FC patterns showed an area under the receiver operating characteristic curve of 0.947, with a sensitivity of 96.15% and a specificity of 81.25% for differentiating between PWS and HCs. CONCLUSION: Impaired intra- and internetwork FC patterns in PWS children are associated with developmental delays, which may result from neural pathway dysfunctions. Intranetwork FC reorganization patterns can discriminate PWS children from HCs. REGISTRATION NUMBER ON THE CHINESE CLINICAL TRAIL REGISTRY: ChiCTR2100046551.


Assuntos
Síndrome de Prader-Willi , Criança , Humanos , Síndrome de Prader-Willi/diagnóstico por imagem , Síndrome de Prader-Willi/patologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Encéfalo/patologia
12.
Neuroimage ; 285: 120470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016527

RESUMO

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Humanos , Criança , Concussão Encefálica/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética
13.
Mov Disord ; 39(2): 318-327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38140793

RESUMO

BACKGROUND: Minor hallucinations (mHs) and well-structured major hallucinations (MHs) are common symptoms of Parkinson's disease (PD) psychosis. OBJECTIVES: To investigate the resting-state networks (RSNs) in patients with PD without hallucinations (PD-nH), with mH (PD-mH), and with MH (PD-MH). METHODS: A total of 73 patients with PD were enrolled (27 PD-nH, 23 PD-mH, and 23 PD-MH). Using seed-based functional connectivity analyses, we investigated the RSNs supposedly related to hallucinations in PD: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), ventral attention network (VAN), and visual network (VN). We compared the cognitive function and RSN connectivity among the three groups. In addition, we performed a seed-to-seed analysis to examine the inter-network connectivity within each group using the corresponding RSN seeds. RESULTS: PD-MH group had lower test scores for attention and visuospatial functions compared with those in the other groups. The connectivity of the right intracalcarine cortex within the DAN was lower in the PD-MH group than in the others. The PD-mH and PD-MH groups showed higher connectivity in the left orbitofrontal cortex within DMN compared with the PD-nH group, whereas the connectivity was lower in the right middle frontal gyrus (MFG) within ECN, precuneus cortex within VAN, right middle temporal gyrus and precuneus cortex within DAN, and left MFG within VN. The PD-mH and PD-MH groups showed different inter-network connectivity between the five RSNs, especially regarding DAN connectivity. CONCLUSIONS: DAN dysfunction may be a key factor in the progression from mH to MH in patients with PD. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Alucinações/etiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38083712

RESUMO

Many studies on morphology analysis show that if short inter-stimulus intervals separate tasks, the hemodynamic response amplitude will return to the resting-state baseline before the subsequent stimulation onset; hence, responses to successive tasks do not overlap. Accordingly, popular brain imaging analysis techniques assume changes in hemodynamic response amplitude subside after a short time (around 15 seconds). However, whether this assumption holds when studying brain functional connectivity has yet to be investigated. This paper assesses whether or not the functional connectivity network in control trials returns to the resting-state functional connectivity network. Traditionally, control trials in block-design experiments are used to evaluate response morphology to no stimulus. We analyzed data from an event-related experiment with audio and visual stimuli and resting state. Our results showed that functional connectivity networks during control trials were more similar to that of tasks than resting-state networks. In other words, contrary to task-related changes in the hemodynamic amplitude, where responses settle after a short time, the brain's functional connectivity networks do not return to their intrinsic resting-state network in such short intervals.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem
15.
Sci Rep ; 13(1): 22430, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38104227

RESUMO

The dynamics of the brain results from the complex interplay of several neural populations and is affected by both the individual dynamics of these areas and their connection structure. Hence, a fundamental challenge is to derive models of the brain that reproduce both structural and functional features measured experimentally. Our work combines neuroimaging data, such as dMRI, which provides information on the structure of the anatomical connectomes, and fMRI, which detects patterns of approximate synchronous activity between brain areas. We employ cluster synchronization as a tool to integrate the imaging data of a subject into a coherent model, which reconciles structural and dynamic information. By using data-driven and model-based approaches, we refine the structural connectivity matrix in agreement with experimentally observed clusters of brain areas that display coherent activity. The proposed approach leverages the assumption of homogeneous brain areas; we show the robustness of this approach when heterogeneity between the brain areas is introduced in the form of noise, parameter mismatches, and connection delays. As a proof of concept, we apply this approach to MRI data of a healthy adult at resting state.


Assuntos
Conectoma , Modelos Neurológicos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Conectoma/métodos , Vias Neurais , Rede Nervosa/diagnóstico por imagem
16.
Hum Brain Mapp ; 44(18): 6293-6307, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37916784

RESUMO

Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includes n-back task-based and resting-state fMRI data from adults aged 22-35 years (task n = 896; rest n = 898). We applied connectome-based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10-fold cross-validation predicted self-reported average sleep duration for the past month from n-back task and resting-state connectivity patterns. We replicated this finding in data from the 2-year follow-up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includes n-back task and resting-state fMRI for adolescents aged 11-12 years (task n = 786; rest n = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10-fold cross-validation again predicted sleep duration from n-back task and resting-state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting-state functional brain connectivity patterns reflect sleep duration in youth and young adults.


Assuntos
Encéfalo , Conectoma , Adulto Jovem , Humanos , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Duração do Sono , Seguimentos , Cognição , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
17.
Neuroimage ; 284: 120436, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931870

RESUMO

Persistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing topological features that persist over these scales. These features are summarized in persistence diagrams, and their dissimilarity is quantified using the Wasserstein distance. However, the Wasserstein distance does not follow a known distribution, posing challenges for the application of existing parametric statistical models. To tackle this issue, we introduce a unified topological inference framework centered on the Wasserstein distance. Our approach has no explicit model and distributional assumptions. The inference is performed in a completely data driven fashion. We apply this method to resting-state functional magnetic resonance images (rs-fMRI) of temporal lobe epilepsy patients collected from two different sites: the University of Wisconsin-Madison and the Medical College of Wisconsin. Importantly, our topological method is robust to variations due to sex and image acquisition, obviating the need to account for these variables as nuisance covariates. We successfully localize the brain regions that contribute the most to topological differences. A MATLAB package used for all analyses in this study is available at https://github.com/laplcebeltrami/PH-STAT.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos
18.
Neuroimage ; 283: 120417, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866758

RESUMO

fMRI of the human brain reveals spatiotemporal patterns of functional connectivity (FC), forming distinct cortical networks. Lately, subcortical contributions to these configurations are receiving renewed interest, but investigations rarely focus explicitly on their effects on cortico-cortical FC. Here, we employ a straightforward multivariable approach and graph-theoretic tools to assess subcortical impact on topological features of cortical networks. Given recent evidence showing that structures like the thalamus and basal ganglia integrate input from multiple networks, we expect increased segregation between cortical networks after removal of subcortical effects on their FC patterns. We analyze resting state data of young and healthy participants (male and female; N = 100) from the human connectome project. We find that overall, the cortical network architecture becomes less segregated, and more integrated, when subcortical influences are accounted for. Underlying these global effects are the following trends: 'Transmodal' systems become more integrated with the rest of the network, while 'unimodal' networks show the opposite effect. For single nodes this hierarchical organization is reflected by a close correspondence with the spatial layout of the principal gradient of FC (Margulies et al., 2016). Lastly, we show that the limbic system is significantly less coherent with subcortical influences removed. The findings are validated in a (split-sample) replication dataset. Our results provide new insight regarding the interplay between subcortex and cortical networks, by putting the integrative impact of subcortex in the context of macroscale patterns of cortical organization.


Assuntos
Conectoma , Rede Nervosa , Humanos , Masculino , Feminino , Rede Nervosa/diagnóstico por imagem , Encéfalo , Gânglios da Base , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
19.
eNeuro ; 10(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37903612

RESUMO

The brain is an organ that functions as a network of many elements connected in a nonuniform manner. In the brain, the neocortex is evolutionarily newest and is thought to be primarily responsible for the high intelligence of mammals. In the mature mammalian brain, all cortical regions are expected to have some degree of homology, but have some variations of local circuits to achieve specific functions performed by individual regions. However, few cellular-level studies have examined how the networks within different cortical regions differ. This study aimed to find rules for systematic changes of connectivity (microconnectomes) across 16 different cortical region groups. We also observed unknown trends in basic parameters in vitro such as firing rate and layer thickness across brain regions. Results revealed that the frontal group shows unique characteristics such as dense active neurons, thick cortex, and strong connections with deeper layers. This suggests the frontal side of the cortex is inherently capable of driving, even in isolation and that frontal nodes provide the driving force generating a global pattern of spontaneous synchronous activity, such as the default mode network. This finding provides a new hypothesis explaining why disruption in the frontal region causes a large impact on mental health.


Assuntos
Neocórtex , Neurônios , Animais , Neurônios/fisiologia , Lobo Frontal/fisiologia , Cabeça , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Imageamento por Ressonância Magnética , Mamíferos
20.
Hum Brain Mapp ; 44(17): 5729-5748, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787573

RESUMO

Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...